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On the Approximate Calculation 
of Double Integrals 

By Moshe Levin 

Abstract. Cubature formulas are obtained which are optimal or asymptotically optimal on 

given sets of functions. These formulas consist of line integrals which may be evaluated by 

optimal or asymptotically optimal quadrature formulas. The advantage of these formulas over 
the optimal and asymptotically optimal cubature formulas with rectangular-lattices of knots is 

shown. 

1. Introduction. Notations and Definitions. The problem of constructing efficient 

cubature formulas is a difficult problem. The results in this field are reviewed in 

[1]-[4]. Below we consider the problem of obtaining optimal and near to optimal 

cubature formulas. The approach is based on the idea of blending [5], [6]. 

Let 1 < p s x, r, s > 1, M, N, P be given, p-1 + q-1 1, D = [0, 1] X [0, 1]. Let 

us introduce the notation of derivatives 

f (i1j)(,) aij 7f(x, y), i,j O, 1,... 

of norms 

supvrai s f(ux i ) I , = , 

Alf )1 =(mDf(X,Y)PdXdY)', p<xc, 

) supvrai If(x, y) i, p = so 

(x,y)GD 

and the sets of functions 

J'17 { f(x ):f (")( x) piecewise continuous on [0, 1], 11 f (yQ)I * ? 1p<1} 

vr's= { f(x, y): f("'j)(x, y) (i ? r, j s s) piecewise continuous on D, 

11 f (rsX)(I * )l ? p < M}, 

urs= { f(x y): E yr5s 11 f(raO)( , y) I 1 N, Vy E [0,1], 

11f(0 (x, * )lIIfP,V 
rs E [O,l ] }, 
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vrs = f(x, y):f VPrs f(i,?)(o, y) -f(io)(1, y), i = 0,...- 1, 

f(0'1)(x, O) = f(0i)(x, 1),j = 0, ... s-1 ), 

upr= {( X, y): f E ur,s n j7rs} 

wrs 
I 

~ s flf(r,o)(. y)dY ?,ffOs( )x ?} Wp AX = fxy): f EE VPr's, |I (O(Y y| N, fI f(? S)(X dxI < P} 

Let Q be a set of linear functionals defined on a set H of functions f, and let L be 
a given linear functional defined on the set H. Consider approximate formulas of the 
form 

(1.1) Lf Lkf+r(f), LkE3IQ,k 1,-1, 
k=1 I 

where r( f ) is the error of the formula. 
Formula (1.1) is called an optimal formula on the set H, if the functionals Lk E Q 

are chosen so that the quantity 

(1.2) r[H] = sup I r(f) 
fEH 

has the minimal value. 
Denote the minimal value of r[H] by r*[H]. 
Formula (1.1) is called asymptotically optimal on the set H, if the functionals 

LK E Q are chosen so that 

lim 

r*[H] 

= 1. 

Designate 

B(0),... I B(1); y (1),...,(l) ; r2(l) 

the coefficients, knots and the value (1.2) of the optimal formulas 

(1.3) |f(x) dx = Akf(Xk) + r( f ) 0 s- xlI < ... < xI< 1 
0 k=1 

on the sets Wprand Ws, respectively. 
It follows by the results of [3,Theorem 5.2.1 and 3.6.1] that r(4) = O(l-r), 

r(O) = 0(1-s). J. Girshovich [3] has obtained an asymptotically optical formula (1.3) 
on the set WpJ' with the knots Xk = (k - 1)/(1-1), k = 1,. .. ,1, and given a simple 
scheme for the evaluation of the coefficients of this formula. 

Designate by 

(1.4) Al,.. A);r(l, Bl, Bl;4) 

the coefficients and the value (1.2) of the asymptotically optimal formulas (1.3) on 
the sets Wpr and Ws, respectively. 
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It is shown in [3], [7] that the optimal formula 
I v 

(1.5) Dff(x,y)dxdy= I 2 Ckjf(XkIY1) +R(f), 
D k=1 j=1 

0xi<... < X- < 1,o 0y1 < ...< yv?1, 

on the set Wprs has coefficients Ckj = A( )BJ(v) knots (Xk, yj) = (xk/), yJV)) and exact 
bound for the remainder 

R[Wp7S] = sup I R(f) I=O(1-r + v-s). 
f E Wp 

The asymptotically optical formula (1.5) on the set Wp,s has coefficients Ckj 
A(f)BJ ), knots (xk, yj) = ((k - 1)/(1 - 1), (j - 1)/(v - 1)) and exact bound for 

the remainder O(1-r + i-S) [3]. The optimal and asymptotically optimal formulas 
(1.5) on the set Vp,s do not exist since by Lemma 1.5.1 of [3,pp. 18-19], these 
formulas must be exact for all functions T(x)yi, A(y)x' E Vp,s (i < r, j < s). Also, 
we do not know the optimal and asymptotically optimal formulas (1.5) on the set 

u's 
Ups . 

The first optimal quadrature formulas were found by A. Sard in the case of fixed 
knots [8], by S. Nikolsky [9] and by I. Schoenberg [10]. The first optimal cubature 
formula with arbitrary knots was presented in [11]. 

2. Cubature Formulas Based on Optimal Quadrature Formulas. We shall find an 
optimal formula of the form 

(2.1) f(x y) dxdy k k f(Xk, y) dY f(x, y) dx 

m n 

+2 2 Ykjf(Xk y) + E(f), 
k=1 j=1 

0 -< xl < ... < xm < I,0 <Y1 < *.*.. < 1, 

on the set Vp In other words, we shall find the formula (2.1) with the minimal 
value of 

E[Vprs] = sup IE(f) I 

THEOREM 2.1. The coefficients and knots 

ak = A(m),(3 = Bj Ykj = kA(m)BJn), 

Xk= X(m), y (n), k = 1 ,... ,m;j ,...,n, 

and the exact bound of the remainder 

(2.3) E [Vpr s]=Mr (m)r2(n) 

are the coefficients, knots and exact bound of the remainder of the optimal formula (2.1) 
on the set Vp5 

Proof. The optimal formula (2.1) must satisfy the condition 

(2.4) E(T(x)yv) = E(p(y)x') = V T(x)yv (y)xA EE Vrs 
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by Lemma 1.5.1 of [3]. In view of this we only consider formulas (2.1) with the 
property (2.4). Taking in (2.1)f(x, y) = (x)y' and f(x, y) =T(y)xx, where T(x) 
is an arbitrary function, we obtain by (2.4) 

n 1 m 1 
(2.5) 2 f3.Y.V v+1a ~ ~ xX- 

(2 5) ~j=1 v + k= 2 kXk =A+ ' 

ak nm 

v +l1Y2 YkjYj+ 2 YkX kv 
k = 1 ... 

_ 
m; 

j=1,. . . ,n; X=O,...,r-1; v= O,...,s- 1. 

Now let f(x, y) EE Vpr 

Uk = Uk, U > O, 
+ 4 {f U< 0. 

By Taylor's formula 
r-I s-I 

f(x, y) = 4i(y)xi + 2 qg1(x)yJ 
i=O j=0 

+ (rf-s1)! (s- 1)! fff )(t, u)(x -t)r 
I 
(y -u)s-I dt du, 

where 

{i (Y) = (i,)(0 y), 

g (X ) = 1 1if (r,j)( t 0)(X - t)r- I dt. 
q1j(x) =j! (r - 1)! f'(i(+)x-t7 t 

Hence by (2.4) 

(2.6) E(f) ( - 1)! (u s-1)! ffDf )(t u)E((x-t) 7'( -u) 7') dt-d 

= || f (r,s)(t u)K(t, u) dt du, 

where K(t, u) is monospline, 

K(t,u)- (r 1)! (s - 1)! [ rs u 2 ak(Xk t)+ 

(1 t ) 2 8Ij(y1 - U)+ 
j=1 

m n 

- Zy~(x-t)Ar-I (y U)s-'I 
k=1 j=] 

The monospline K(t, u) satisfies the condition 

(2.7) K(o)(O, y) -K(0 )(x 0) 0-, 0 X = 0,... .,r - 1; v 0,. .. ,s -1, 

by the equalities (2.5). 
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By Holder's inequality we obtain from (2.6) that 

(2.8) I E(f) j< MIIK(-, )Ilq. 

For the function 

(x1 S y) qIK( l M Cp j K(t, u) I- sgn K(t, u) (x- t) ( -u)+ dt du 

belonging to vpr'S, it follows from (2.6) that 

E(fo) - M II K(., *)II q 

Then we have from (2.8) the equality 

(2.9) E[Vprs] = MIIK(- )Iq. 

Now we have to minimize this value. 
Consider only functions K(x, y) satisfying condition (2.7) and consider the 

monosplines 

(2.10) K1(t) (1r (r 1 2 ak(Xk - + (-1!k-I 

K (io) = 0, i=0, . .. ,r-1, 

(2.11) K2(u) ( - ) - 1 2 U 

K(1)(0) = 0, 1 = O, . .., Is -1. 

Let 

inf 11 K(-1 ,*) 11q = 11 K*(- , * )11lq 
(ak ,fj ,Ykj ,Xk ,Yj} 

{inf }1IK )1 =1 KK* i1 s (nf} 11 K2()1q l()1q 
{ak,Xk} 

q 
{13fi' Y1} 

J q 2 q 

It is shown in [3] that 

K*(t) - ( 1) A(m)(x(m) -t)+ r 
(r - 1! k~= ? 

U)s 
~~~~~n 

K2j(u) = !) - (1 - u)'Bn 
n 1 U )-s- K*(U) (si)! 

j 
+ 

(2.12) IK* l =r(m, IK2*( )Il = r2(n 

Also we have the equality 

(2.13) K*(t, u) =Kl*(t)K2*(u) 

by the result on polynomials of least derivation from zero [7]. This, together with 
(2.12), give us the values (2.2) and (2.3). The formula (2.1) with coefficients and 
knots (2.2) satisfies the condition (2.4). 

The theorem is proved. 



278 MOSHE LEVIN 

COROLLARY. Consider the formula 

m n 

(2.14) Jf(x, y) dxdy = 1 A(m)BJn 2)f(xm) 2 J(n2)) 
D k=1 j=1~~kk 

Y 

+ 2 z Akm2)Bj(n)f(xkm2), yJ(n)) 
k=1 j=1 

m n 
- 2 A( )BJ(n)f (4x ),yn))+E1(f) 

k=1 j=1 

Let f(x, y) EFUpr Then 

(2.15) | E1(f ) I< Nr(M2) + Pr2(n2 + Mr(m)r(n). 

Proof. We can consider the formula (2.1) with coefficients and knots (2.2) on the 
set Up s as Up s C Vp, s. 

Applying optimal quadrature formulas [3] 

f f(x, y(n)) dx = ; Am2)f (nXm2) y(n)) + r1(f) 

Ir(f) | Nr(m2),N-f(x, y) e W' Vy e [O,1], 

Jf(x(m), y) dy = B(n2)f(Xm m) f n2)) + r2(f), 

o j~~~=1 

I r2(f) I Prfn), Pfl(x, y) EWp Vx [0,], 

to the integrals in formula (2.1) with coefficients and knots (2.2), we obtain formula 
(2.14) and the estimate 

mn 
(2.16) EiE(f)IPr(n2) X (AM(n2) +N4m2) r I2J(f +M4m)r(n). 

k=l j=l 

Since by [12] A(m) > O, BJ(n)>O, k =1,. . .,m;j =1,. . .,n; A (jm)?+ ** *A(mU) 

B2) + * * * 
+BX 

) = 1, (2.15) follows. 
The corollary is proved. 

THEOREM 2.2. The formula 

fjDf(x,y) dxdY =? klf'f(km ,Y)dY?nJI f'f(x n )d 

1nn 21 f(m2) (m)M(kn 

k m~k1j1 m 

is the optimal formula (2.1) on the set V.,S The exact bound for the remainder of this 
formula is 

M 

E P 
]=mrns Br,q s,q' 

where B,,,q =mifl 1i B,() )-c11 q and B,(x) is the Bernoulli polynomial of degree ,u. 



ON THE APPROXIMATE CALCULATION OF DOUBLE INTEGRALS 279 

The proof is similar to the proof of Theorem 2.1 and uses the optimal quadrature 
formulas for periodic functions [3] and the formula 

f(x, y) = (x) + (y) + 1! ff(rs)(t, u)Br*(x - t)B*(y - u) dtdu, 

where 

p(x) = -ffD u)B,*(x - t) dtdu, 4(y) f' f(t, y) dt, 

B,* (x)-BE,,(x) if x E [0, 1), B,* (x + 1) _B,, (x). 

The latter can be obtained by the analogous one-dimensional formula [13]. 

COROLLARY. Consider the formula 

(2.17) ff(x Thy)edx dy 
I 2 f (2n 2f kn'j 

k=~1 j=1 

IEI(flS !2'Brq+ !2sBs + EI(f).Bsqss 

mnk=1 j=1 

Let f(x, y) E- Upr,s. Then 

I EI(f ) j< N,p2rBr,q r !2rr, +s!n 2s Bs,q +r!s!mrn s r,qBs,q- 

The proof is similar to the proof of the corollary of Theorem 2.1. 

3. Cubature Formulas Based on Asymptotically Optimal Quadrature Formulas. The 

optimal formula (2.1) and formula (2.14) are based on the optimal quadrature 
formulas (1.3) on Wp, which are known only for few values of ,u [3], [4]. Therefore, it 
is useful to obtain formulas (2.1) and formulas of type (2.14) based on asymptoti- 
cally optimal quadratures on Wp, which are known for all integers ,u [3, p. 108]. 

THEOREM 3.1. The coefficients and knots 

(3.1) ak =A ), =BJ(n) Yk -A m)BJ(n) 
k- i j-l- 

Xk = - Yi _l k = 1,. ... ,m; n , ,n 

and the exact bound for the remainder 

(3.2) E[Vps] = r!q sI + , + 
r!SMrns 1, m 1 ni 

are the coefficients, knots and exact bound for the remainder of the asymptotically 
optimal formula (2.1) on the set Vpr5. 

The jimn), ff(n) are those alluded to in Section 1, the numbers By.q are determined 
in Theorem 2.1, and C1 and C2 are constants independent of m and n. 

Proof. Consider formula (2.1) on the set Vpr,s. By (2.9) and (2.13) we have the exact 
bound for the remainder for the optimal formula (2.1) on the set Vpr7s. 
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Consider formula (2.1) with the corresponding monospline 

K(t, u) =K (t, u)-K(t)K2(U), 

where KI(t) and K2(u) are the monosplines (2.10) and (2.11) with coefficients and 
knots (3.1); that is, formula (2.1) with coefficients and knots (3.1). The exact bound 
for the remainder of this formula is 

(3.4) E[Vps] = M' IK&( )11 q IIK2(')11 q- 

As the monosplines KI(t) and K2(u) define the asymptotically optimal quadrature 
formulas (3.1) with 1 = m and l = n on the sets Wr and Ws, respectively, [3,pp. 
22-26], we have by [3, pp. 108-109] the equalities 

IlKl()llB= ! q ( + C,lq Bs , IK()i= !q (I + n IIKi(-)11q= Bk 2(-+ )) /q 

im IIK*(.)Ilq IK*'.I lim _ -=liM =1 
M--*o IIKI( )IIq n - 1 1IK2( )Iq 

Then by (3.3) and (3.4) the equality 

lim E*[Vprs]/E[vps] 1 
m, n 00 o 

and the equality (3.2) hold. 
The theorem is proved. 

COROLLARY. Consider the formula 

(3.5) fff(x,y)dxdy= 2 -n2 k_ I _j I) 

+ 2 -2 Ak t fj ( m2 n2-I 

mk k-If(-/ j__= 1-l km 2= n 1 

Let f(x, y) E Up S. Then 

S AB r ( +Cl )1/q BPBy, q( +2w/ 

r!s!m' ' n1+m)f (1 j2 

where A and B do not depend on m and n, 

0 A() 0 * *+ | (t) m)fA f gn)f + E +X ( f)1< 

The proof is the same as the proof of the Corollary following Theorem 2.1. 

4. Comparison of the Formulas. Example. Consider the formula (1.5) with /-2 
v= n2 and the formulas obtained in the Corollaries of Sections 2 and 3. For 

simplicity we take m n, r s. As follows from [3] and Sections 1-3 the optimal 
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formula (1.5) and the corresponding formulas (2.14), (2.17) and (3.5) have the same 
estimate O(m-2r). However, formulas (2.14), (2.17) and (3.5) have a remarkable 
advantage over the optimal formula (1.5). The latter uses m4 values of f(x, y), while 
formulas (2.14), (2.17) and (3.5) use only m2(2m + 1) values of functionf(x, y). 

Example. We compare the evaluation of the integral 

If 1?(I_X_y+XY)2,5 
IID 0.5 + sin(xy) 

by the optimal formula (1.5) with 1 = v = m2 and by formula (2.14) with m = n. 
Both formulas are taken for the set W 2. By [3, pp. 50-51] we have 

x(m) - A() = - 2 + 0.53)h,(+ 3) , 

A(m) =A(m) =B(m) =Bm(m) -- (I + 0O5F3)hms 

A(m) =B(m) =2hm9 k = 2, . .. ,m L 

hm (2m + 3 -2). 

Let Im be the approximate value of I obtained by formula (2.14) with qm = 2m3 + m2 
values of f(x, y), and let I'm be the approximate value of I obtained by the optimal 
formula (1.5) with km = m4 values of f(x, y). We obtain for m = 3,6,9 

Im IM km m 

1.59480... 63 1.59484... 81 3 
1.595899... 468 1.595901... 1296 6 
1.595947... 1539 1.595947... 6561 9 

The superiority of formula (2.14) over the optimal formula of the form (1.5) is 
obvious. 
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